Central processing unit  (CPU)

Central processing unit  (CPU)

“CPU” redirects here. For other uses, see CPU (disambiguation).

“Computer processor” redirects here. For other uses, see Processor.


An Intel 80486DX2 CPU, as seen from above

Intel 80486DX2 
Intel 80486DX2 

Bottom side of an Intel 80486DX2, showing its pins

A central processing unit (CPU) is the electronic circuitry within a computer that carries out the instructions of a computer program by performing the basic arithmetic, logical, control and input/output (I/O) operations specified by the instructions. The computer industry has used the term “central processing unit” at least since the early 1960s.[ Traditionally, the term “CPU” refers to a processor, more specifically to its processing unit and control unit (CU), distinguishing these core elements of a computer from external components such as main memory and I/O circuitry.

The form, design, and implementation of CPUs have changed over the course of their history, but their fundamental operation remains almost unchanged. Principal components of a CPU include the arithmetic logic unit (ALU) that performs arithmetic and logic operations, processor registers that supply operands to the ALU and store the results of ALU operations and a control unit that orchestrates the fetching (from memory) and execution of instructions by directing the coordinated operations of the ALU, registers and other components.

Most modern CPUs are microprocessors, meaning they are contained on a single integrated circuit (IC) chip. An IC that contains a CPU may also contain memory, peripheral interfaces, and other components of a computer; such integrated devices are variously called microcontrollers or systems on a chip (SoC). Some computers employ a multi-core processor, which is a single chip containing two or more CPUs called “cores”; in that context, one can speak of such single chips as “sockets”.

Array processors or vector processors have multiple processors that operate in parallel, with no unit considered central. There also exists the concept of virtual CPUs which are an abstraction of dynamical aggregated computational resources.[4]


Main article: History of general-purpose CPUs

general-purpose CPUs
general-purpose CPUs

EDVAC, one of the first stored-program computers

Early computers such as the ENIAC had to be physically rewired to perform different tasks, which caused these machines to be called “fixed-program computers”.[5] Since the term “CPU” is generally defined as a device for software (computer program) execution, the earliest devices that could rightly be called CPUs came with the advent of the stored-program computer.

The idea of a stored-program computer had been already present in the design of J. Presper Eckert and John William Mauchly’s ENIAC, but was initially omitted so that it could be finished sooner.[6] On June 30, 1945, before ENIAC was made, mathematician John von Neumanndistributed the paper entitled First Draft of a Report on the EDVAC. It was the outline of a stored-program computer that would eventually be completed in August 1949.[7] EDVAC was designed to perform a certain number of instructions (or operations) of various types. Significantly, the programs written for EDVAC were to be stored in high-speed computer memory rather than specified by the physical wiring of the computer. This overcame a severe limitation of ENIAC, which was the considerable time and effort required to reconfigure the computer to perform a new task. With von Neumann’s design, the program that EDVAC ran could be changed simply by changing the contents of the memory. EDVAC, however, was not the first stored-program computer; the Manchester Baby, a small-scale experimental stored-program computer, ran its first program on 21 June 1948and the Manchester Mark 1 ran its first program during the night of 16–17 June 1949.

 Transistor CPUs

 Transistor CPUs

IBM PowerPC 604e processor


Main article: Transistor computer

The design complexity of CPUs increased as various technologies facilitated building smaller and more reliable electronic devices. The first such improvement came with the advent of the transistor. Transistorized CPUs during the 1950s and 1960s no longer had to be built out of bulky, unreliable and fragile switching elements like vacuum tubes and relays. With this improvement more complex and reliable CPUs were built onto one or several printed circuit boards containing discrete (individual) components.

In 1964, IBM introduced its IBM System/360 computer architecture that was used in a series of computers capable of running the same programs with different speed and performance. This was significant at a time when most electronic computers were incompatible with one another, even those made by the same manufacturer. To facilitate this improvement, IBM used the concept of a microprogram (often called “microcode”), which still sees widespread usage in modern CPUs.[2 The System/360 architecture was so popular that it dominated the mainframe computer market for decades and left a legacy that is still continued by similar modern computers like the IBM zSeries. In 1965, Digital Equipment Corporation (DEC) introduced another influential computer aimed at the scientific and research markets, the PDP-8.

Transistor computer

Fujitsu board with SPARC64 VIIIfx processors

Transistor-based computers had several distinct advantages over their predecessors. Aside from facilitating increased reliability and lower power consumption, transistors also allowed CPUs to operate at much higher speeds because of the short switching time of a transistor in comparison to a tube or relay.] The increased reliability and dramatically increased speed of the switching elements (which were almost exclusively transistors by this time), CPU clock rates in the tens of megahertz were easily obtained during this period Additionally while discrete transistor and IC CPUs were in heavy usage, new high-performance designs like SIMD (Single Instruction Multiple Data) vector processors began to appear.[  These early experimental designs later gave rise to the era of specialized supercomputers like those made by Cray Inc and Fujitsu Ltd.

Small-scale integration CPUs

CPU, core memory and external bus interface of a DEC PDP-8/I, made of medium-scale integrated circuits

During this period, a method of manufacturing many interconnected transistors in a compact space was developed. The integrated circuit (IC) allowed a large number of transistors to be manufactured on a single semiconductor-based die, or “chip”. At first, only very basic non-specialized digital circuits such as NOR gates were miniaturized into ICs. CPUs based on these “building block” ICs are generally referred to as “small-scale integration” (SSI) devices. SSI ICs, such as the ones used in the Apollo Guidance Computer, usually contained up to a few dozen transistors. To build an entire CPU out of SSI ICs required thousands of individual chips, but still consumed much less space and power than earlier discrete transistor designs.

IBM’s System/370, follow-on to the System/360, used SSI ICs rather than Solid Logic Technology discrete-transistor modules.DEC’s PDP-8/I and KI10 PDP-10 also switched from the individual transistors used by the PDP-8 and PDP-10 to SSI ICs, and their extremely popular PDP-11 line was originally built with SSI ICs but was eventually implemented with LSI components once these became practical.

Large-scale integration CPUs

Lee Boysel published influential articles, including a 1967 “manifesto”, which described how to build the equivalent of a 32-bit mainframe computer from a relatively small number of large-scale integration circuits (LSI).[40][41] At the time, the only way to build LSI chips, which are chips with a hundred or more gates, was to build them using a MOS process (i.e., PMOS logic, NMOS logic, or CMOS logic). However, some companies continued to build processors out of bipolar chips because bipolar junction transistors were so much faster than MOS chips; for example, Datapoint built processors out of transistor–transistor logic (TTL) chips until the early 1980s.[4 At the time, MOS ICs were so slow that they were considered useful only in a few niche applications that required low power.

As the microelectronic technology advanced, an increasing number of transistors were placed on ICs, decreasing the number of individual ICs needed for a complete CPU. MSI and LSI ICs increased transistor counts to hundreds, and then thousands. By 1968, the number of ICs required to build a complete CPU had been reduced to 24 ICs of eight different types, with each IC containing roughly 1000 MOSFETs. In stark contrast with its SSI and MSI predecessors, the first LSI implementation of the PDP-11 contained a CPU composed of only four LSI integrated circuits


Main article: Microprocessor


Die of an Intel 80486DX2microprocessor (actual size: 12 × 6.75 mm) in its packaging

Intel Core i5 CPU on a Vaio E serieslaptop motherboard

Intel Core i5 CPU on a Vaio E serieslaptop motherboard (on the right, beneath the heat pipe)

Since the introduction of the first commercially available microprocessor, the Intel 4004 in 1970, and the first widely used microprocessor, the Intel 8080 in 1974, this class of CPUs has almost completely overtaken all other central processing unit implementation methods. Mainframe and minicomputer manufacturers of the time launched proprietary IC development programs to upgrade their older computer architectures, and eventually produced instruction set compatible microprocessors that were backward-compatible with their older hardware and software. Combined with the advent and eventual success of the ubiquitous personal computer, the term CPU is now applied almost exclusively to microprocessors. Several CPUs (denoted cores) can be combined in a single processing chip.

Previous generations of CPUs were implemented as discrete components and numerous small integrated circuits (ICs) on one or more circuit boards. Microprocessors, on the other hand, are CPUs manufactured on a very small number of ICs; usually just one. The overall smaller CPU size, as a result of being implemented on a single die, means faster switching time because of physical factors like decreased gate parasitic capacitance This has allowed synchronous microprocessors to have clock rates ranging from tens of megahertz to several gigahertz. Additionally, the ability to construct exceedingly small transistors on an IC has increased the complexity and number of transistors in a single CPU many fold. This widely observed trend is described by Moore’s law, which had proven to be a fairly accurate predictor of the growth of CPU (and other IC) complexity until 2016.

While the complexity, size, construction and general form of CPUs have changed enormously since 1950, the basic design and function has not changed much at all. Almost all common CPUs today can be very accurately described as von Neumann stored-program machines. As Moore’s law no longer holds, concerns have arisen about the limits of integrated circuit transistor technology. Extreme miniaturization of electronic gates is causing the effects of phenomena like electromigration and subthreshold leakage to become much more significant.[56][57] These newer concerns are among the many factors causing researchers to investigate new methods of computing such as the quantum computer, as well as to expand the usage of parallelism and other methods that extend the usefulness of the classical von Neumann model.

DecodeThe instruction that the CPU fetches from memory determines what the CPU will do. In the decode step, performed by the circuitry known as the instruction decoder, the instruction is converted into signals that control other parts of the CPU.

The way in which the instruction is interpreted is defined by the CPU’s instruction set architecture (ISA). Often, one group of bits (that is, a “field”) within the instruction, called the opcode, indicates which operation is to be performed, while the remaining fields usually provide supplemental information required for the operation, such as the operands. Those operands may be specified as a constant value (called an immediate value), or as the location of a value that may be a processor register or a memory address, as determined by some addressing mode.

In some CPU designs the instruction decoder is implemented as a hardwired, unchangeable circuit. In others, a microprogram is used to translate instructions into sets of CPU configuration signals that are applied sequentially over multiple clock pulses. In some cases the memory that stores the microprogram is rewritable, making it possible to change the way in which the CPU decodes instructions.

Structure and implementation See also: Processor design

Structure and implementation See also: Processor design

Block diagram of a basic uniprocessor-CPU computer. Black lines indicate data flow, whereas red lines indicate control flow; arrows indicate flow directions.

Hardwired into a CPU’s circuitry is a set of basic operations it can perform, called an instruction set. Such operations may involve, for example, adding or subtracting two numbers, comparing two numbers, or jumping to a different part of a program. Each basic operation is represented by a particular combination of bits, known as the machine language opcode; while executing instructions in a machine language program, the CPU decides which operation to perform by “decoding” the opcode. A complete machine language instruction consists of an opcode and, in many cases, additional bits that specify arguments for the operation (for example, the numbers to be summed in the case of an addition operation). Going up the complexity scale, a machine language program is a collection of machine language instructions that the CPU executes.

The actual mathematical operation for each instruction is performed by a combinational logic circuit within the CPU’s processor known as the arithmetic logic unit or ALU. In general, a CPU executes an instruction by fetching it from memory, using its ALU to perform an operation, and then storing the result to memory. Beside the instructions for integer mathematics and logic operations, various other machine instructions exist, such as those for loading data from memory and storing it back, branching operations, and mathematical operations on floating-point numbers performed by the CPU’s floating-point unit (FPU).

Control unit

Main article: Control unit

The control unit of the CPU contains circuitry that uses electrical signals to direct the entire computer system to carry out stored program instructions. The control unit does not execute program instructions; rather, it directs other parts of the system to do so. The control unit communicates with both the ALU and memory.

Arithmetic logic unit

Main article: Arithmetic logic unit

Control unit

Symbolic representation of an ALU and its input and output signals

The arithmetic logic unit (ALU) is a digital circuit within the processor that performs integer arithmetic and bitwise logic operations. The inputs to the ALU are the data words to be operated on (called operands), status information from previous operations, and a code from the control unit indicating which operation to perform. Depending on the instruction being executed, the operands may come from internal CPU registers or external memory, or they may be constants generated by the ALU itself.

When all input signals have settled and propagated through the ALU circuitry, the result of the performed operation appears at the ALU’s outputs. The result consists of both a data word, which may be stored in a register or memory, and status information that is typically stored in a special, internal CPU register reserved for this purpose.

Memory management unit (MMU)Main article: Memory management unit

Most high-end microprocessors (in desktop, laptop, server computers) have a memory management unit, translating logical addresses into physical RAM addresses, providing memory protection and paging abilities, useful for virtual memory. Simpler processors, especially microcontrollers, usually don’t include an MMU.

445 total views, 1 views today

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by wp-copyrightpro.com